Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 316
Filtrar
1.
Fitoterapia ; 174: 105875, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417678

RESUMO

Grapefruit mint (Mentha suaveolens × piperita) is a hybrid, perennial, and aromatic plant widely cultivated all over the world and used in the food, cosmetics, and pharmaceutical industries mostly for its valuable essential oil. Herein, we evaluated the anticancer activity of the grapefruit mint essential oil, cultivated in Iran. For the chemical composition analysis of essential oil, GC-MS was used. MTT assay was utilized for assessing the cytotoxic activity of the essential oil. The type of cell death was determined by annexin V/PI staining. Essential oil effect on the expression of maternally expressed gene 3 (MEG3), a regulatory lncRNA involved in cell growth, proliferation, and metastasis, was studied using qRT-PCR. Linalool (43.9%) and linalool acetate (40.1%) were identified as the dominant compounds of essential oil. Compared with MCF-7, the MDA-MB-231 cells were more sensitive to essential oil (IC50 = 7.6 µg/ml in MCF-7 and 5.9 µg/ml in MDA-MB-231 after 48 h). Essential oil induced cell death by apoptosis. Wound healing scratch assay confirmed the anti-invasive effect of essential oil. In addition, essential oil upregulated the tumor suppressor MEG3 in breast cancer cells. These results provide new insights into grapefruit mint essential oil potential application as an anticancer adjuvant in combination treatments for breast cancer patients.


Assuntos
Monoterpenos Acíclicos , Neoplasias da Mama , Citrus paradisi , Mentha , Óleos Voláteis , Humanos , Feminino , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Mentha/química , Estrutura Molecular , Neoplasias da Mama/tratamento farmacológico , Mentha piperita
2.
Molecules ; 28(22)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38005307

RESUMO

In this study, we assessed the effects of different harvest times (9 a.m., 1 p.m., and 5 p.m.) and hydrodistillation times (60, 90, and 120 min) on the yield, chemical composition, and antioxidant activity of the spearmint (Mentha spicata L.) essential oil (EO) sourced from the Amazon region. EO yield was ≥1.55% and was not significantly influenced (p ≥ 0.05) by the different harvest times and hydrodistillation times. Thirty-one different organic compounds were identified, of which menthol (91.56-95.68%), menthone (0.6-2.72%), and isomenthone (0.55-1.46%) were the major constituents. The highest menthol content in the EO was obtained from samples collected at 9 a.m., with a hydrodistillation time of 60-90 min, compared to other harvest and hydrodistillation times. This suggests that exposure to sun and light, which is greater at harvest times of 1 p.m. and 5 p.m., decreased the menthol content and altered the chemical composition of Mentha EO. Furthermore, the sample harvested at 9 a.m. and hydrodistilled for 60 min showed the highest antioxidant activity (61.67 equivalent mg of Trolox per g of EO), indicating that antioxidant activity is strongly affected by light exposure and the contact duration of the sample with boiling water during hydrodistillation.


Assuntos
Mentha spicata , Mentha , Óleos Voláteis , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Mentha/química , Mentol/farmacologia , Antioxidantes/farmacologia , Antioxidantes/química , Mentha spicata/química
3.
Molecules ; 28(19)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37836777

RESUMO

A comparative study on essential oils extracted from Mentha suaveolens Ehrh. from Italy is reported. Two extraction procedures were investigated: hydrodistillation and steam distillation, carried out as a continuous and fractionated procedure. Fresh and dried plant material from two harvests was used. The hydrodistillation method yielded a higher amount of essential oil. The dried plant was significantly richer in essential oil per kg of starting plant material. Gas chromatography-mass spectrometry analysis of 112 samples showed that the essential oils belong to the piperitenone oxide-rich chemotype. In addition, piperitenone, p-cymen-8-ol, and limonene were among the most abundant compounds in the different samples. A higher amount of piperitenone oxide was obtained by hydrodistillation, while steam distillation gave a higher percentage of piperitenone and limonene. The essential oils were characterized for their anti-Candida albicans activity; higher potency was observed for the samples rich in piperitenone oxide, with MIC values ranging from 0.39 to 0.78 mg·mL-1 (0.039% and 0.078% p/v). The results of this work provide a deep insight into the methodology of essential oil extraction and the associated chemical variability of M. suaveolens Ehrh. Some of the essential oils are potent against C. albicans and could be considered for potential use in therapy.


Assuntos
Mentha , Óleos Voláteis , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Candida , Limoneno , Mentha/química , Destilação , Vapor , Candida albicans
4.
Molecules ; 28(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37570659

RESUMO

Helicobacter pylori infections are highly common amongst the global population. Such infections have been shown to be the cause of gastric ulcers and stomach carcinoma and, unfortunately, most cases are asymptomatic. Standard treatment requires antibiotics such as metronidazole or azithromycin to which many strains are now resistant. Mentha species have been used as a natural treatment for gastrointestinal diseases throughout history and essential oils (EOs) derived from these plants show promising results as potential antimicrobial agents. In this study, EOs obtained from the leaves and flowers of five cultivars of Mentha × piperita and M. spicata were examined by GC-MS. The investigated mints are representatives of four chemotypes: the menthol chemotype (M. × piperita 'Multimentha' and M. × piperita 'Swiss'), the piperitenone oxide chemotype (M. × piperita 'Almira'), the linalool chemotype (M. × piperita 'Granada'), and the carvone chemotype (M. spicata 'Moroccan'). The chemical composition of EOs from mint flowers and leaves was comparable with the exception of the Swiss cultivar. Menthol was the most abundant component in the leaves while menthone was highest in flowers. The H. pylori ATCC 43504 reference strain and 10 other H. pylori clinical strains were examined for their sensitivity to the EOs in addition to their major monoterpenoid components (menthol, menthone, carvone, dihydrocarvone, linalool, 1,8-cineole, and limonene). All tested mint EOs showed inhibitory activity against both the reference H. pylori ATCC 43504 strain (MIC 15.6-31.3 mg/L) and clinical H. pylori strains (MIC50/90 31.3-250 mg/L/62.5-500 mg/L). Among the reference monoterpenes, menthol (MIC50/90 7.8/31.3 mg/L) and carvone (MIC50/90 31.3/62.5 mg/L) had the highest anti-H. pylori activity, which also correlated with a higher activity of EOs containing these compounds (M. × piperita 'Swiss' and M. spicata 'Moroccan'). A synergistic and additive interaction between the most active EOs/compounds and antibiotics possibly points to a new plant-based anti-H. pylori treatment.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Mentha , Óleos Voláteis , Humanos , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Mentol/farmacologia , Mentol/química , Mentha/química , Mentha piperita/química , Antibacterianos/farmacologia
5.
Molecules ; 28(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37570720

RESUMO

The incorporation of fermented camel milk with natural additives possesses numerous benefits for the treatment of various pathological and metabolic conditions. The present study investigated the impact of fortification of fermented camel milk with sage or mint leaves powder (1 and 1.5%, respectively) on glucose and insulin levels, lipid profile, and liver and kidney functions in alloxan-induced diabetic rats. The gross chemical composition of sage and peppermint leaves powder was studied. The chemical composition of sage and mint extracts was performed using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-MS) of sage and mint extracts. Furthermore, a total of forty-two adult normal male albino rats were included in this study, whereas one group was kept as the healthy control group (n = 6 rats) and diabetes was induced in the remaining animals (n = 36 rats) using alloxan injection (150 mg/kg of body weight). Among diabetic rats groups, a control group (n = 6 rats) was kept as the diabetic control group whereas the other 5 groups (6 rats per group) of diabetic rats were fed fermented camel milk (FCM) or fermented camel milk fortified with 1 and 1.5% of sage or mint leaves powder. Interestingly, the oral administration of fermented camel milk fortified with sage or mint leaves powder, at both concentrations, caused a significant decrease in blood glucose level and lipid profile, and an increase in insulin level compared to the diabetic control and FCM groups. Among others, the best results were observed in the group of animals that received fermented camel milk fortified with 1.5% sage powder. In addition, the results revealed that the fermented camel milk fortified with sage or mint leaves powder improved the liver and kidney functions of diabetic rats. Our study concluded that the use of sage and mint leaves powder (at a ratio of 1.5%) with fermented camel milk produces functional food products with anti-diabetic activity.


Assuntos
Diabetes Mellitus Experimental , Insulinas , Mentha , Salvia officinalis , Ratos , Masculino , Animais , Leite/química , Mentha piperita , Salvia officinalis/química , Camelus , Pós/análise , Diabetes Mellitus Experimental/tratamento farmacológico , Aloxano , Mentha/química , Lipídeos/análise , Folhas de Planta , Extratos Vegetais/farmacologia , Extratos Vegetais/análise
6.
BMC Complement Med Ther ; 23(1): 267, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37496047

RESUMO

BACKGROUND: Mentha arvensis has been utilized in diverse traditional medicines as an antidiabetic, anticarcinogenic, antiallergic, antifungal, and antibacterial agent. In this work, we have explored the phytochemical analyses and pharmacological potential of Mentha arvensis using both in silico and in vitro approaches for drug discovery. METHODS: To determine the extract with the highest potential for powerful bioactivity, ethanol was used as the solvent. The phytochemical components of the extracts were quantified using liquid chromatography-mass spectrometry analysis. The potential bioactivities of extracts and lead phytocompounds, including their antibacterial, cytotoxic, and anti-diabetic effects, were evaluated. RESULTS: The compounds oleanolic acid, rosmarinic acid, luteolin, isoorientin, and ursolic acid have been identified through liquid chromatography mass spectrometry analysis. Based on antimicrobial research, it has been found that the Mentha arvensis extract shows potential activity against K. pneumoniae which was 13.39 ± 0.16. Mentha arvensis has demonstrated a greater degree of efficacy in inhibiting α-glucosidase, with an inhibition rate of 58.36 ± 0.12, and in inhibiting α-amylase, with an inhibition rate of 42.18 ± 0.83. The growth of HepG2 cells was observed to be significantly suppressed upon treatment with extracts obtained from Mentha arvensis. Finally, In-silico methods demonstrated that the Luteolin and Rosmarinic acid exhibit acceptable drug-like characteristics. Furthermore, Molecular docking studies further demonstrated that both compounds have strong potential to inhibit the active sites of therapeutically relevant enzymes involved in Diabetes, Bacterial infections, and Cancer. CONCLUSIONS: The results of this study suggest that the Mentha arvensis extract possesses potent pharmacological potentials, particularly in terms of antibacterial, anti-diabetic, and cytotoxic effects. Particularly, Luteolin and Rosmarinic acid were identified as the top contenders for potential bioactivity with acceptable drug-like properties.


Assuntos
Mentha , Mentha/química , Luteolina , Hipoglicemiantes/farmacologia , Simulação de Acoplamento Molecular , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
7.
BMC Plant Biol ; 23(1): 309, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37296388

RESUMO

Salinity, a severe worldwide issue, compromises the economic production of medicinal plants including mints and causes drug-yield decline. γ-Aminobutyric acid (GABA) is a tolerance-inducing signaling bio-molecule in various plant physiological processes. Pineapple mint (Mentha suaveolens Ehrh.) is a valuable medicinal herb with an exhilarating scent of citrus fruit. Piperitenone oxide is the major bioactive constituent of its essential oil, having significant demand by pharmaceutical industries. Nonetheless, modeling and optimizing the effective concentration of GABA remain within twin foci of interest. Therefore, a two factor-five level (NaCl 0-150 mM and GABA 0-2.4 mM) central composite design was conducted to model and optimize drug yield and physiological responses of M. suaveolens. Based on the design of experiments (DoE) approach, different linear, quadratic, cubic, and quartic models were assigned to the response variables. Change trends of shoot and root dry weights followed a simple linear model, whereas sophisticated models (i.e., multiple polynomial regression) were fitted to the other traits. NaCl stress inevitably reduced root and shoot dry weight, piperitenone oxide content, relative water content, pigments content, and maximum quantum yield of PSII. However, content of malondialdehyde (MDA) and total flavonoid, and DPPH radical scavenging activity were increased under salinity. Under severe NaCl stress (150 mM), the essential oil content (0.53%) was increased three times in comparison with control (0.18%). Optimization analysis demonstrated that the highest amount of essential oil (0.6%) and piperitenone oxide (81%) as a drug yield-determining component would be achievable by application of 0.1-0.2 mM GABA under 100 mM NaCl. The highest dry weight of root and shoot was predicted to be achieved at 2.4 mM GABA. Overall, extremely severe NaCl stress (i.e., more than 100 mM) in which a sharp drop in yield components value was observed seemed to be out of M. suaveolens salinity tolerance range. Hence, it is rationale to compensate the decrease of drug yield by foliar application of a dilute GABA solution (i.e., 0.1-0.2 mM) under 100 mM NaCl stress or lower levels.


Assuntos
Ananas , Mentha , Óleos Voláteis , Plantas Medicinais , Cloreto de Sódio/farmacologia , Cloreto de Sódio/metabolismo , Mentha/química , Mentha/metabolismo , Óleos Voláteis/metabolismo , Óxidos/metabolismo
8.
Molecules ; 28(11)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37299028

RESUMO

Mentha longifolia is a valuable medicinal and aromatic plant that belongs to Lamiaceae family. This study looked at the antibacterial effects of M. longifolia essential oil and pulegone in edible coatings made of chitosan and alginate on the growth of Staphylococcus aureus, Listeria monocytogenes, and Escherichia coli in cheese. For this purpose, first fresh mint plant was collected from the cold region of Jiroft in Kerman province. Plant samples were dried in the shade at ambient temperature, and essential oil was prepared using Clevenger. The essential oil was analyzed by gas chromatography using mass spectrometric (GC/MS) detection. The major composition of M. longifolia oil was pulegone (26.07%), piperitone oxide (19.72%), and piperitone (11.88%). The results showed that adding M. longifolia essential oils and pulegone to edible coatings significantly reduced the growth of bacteria during storage. The bacterial population decreased by increasing the concentration of chitosan, M. longifolia, and pulegone in edible coatings. When the effects of pulegone and M. longifolia essential oils on bacteria were compared, it was found that pulegone had a stronger effect on bacterial population reduction. Coating treatments showed more antibacterial activity on E. coli than other bacteria. In general, the results of this research showed that alginate and chitosan coatings along with M. longifolia essential oil and its active ingredient pulegone had antibacterial effects against S. aureus, L. monocytogenes, and E. coli in cheese.


Assuntos
Queijo , Quitosana , Filmes Comestíveis , Mentha , Óleos Voláteis , Óleos Voláteis/química , Mentha/química , Quitosana/farmacologia , Monoterpenos/química , Alginatos/farmacologia , Staphylococcus aureus , Escherichia coli , Queijo/análise , Bactérias , Antibacterianos/farmacologia , Antibacterianos/análise
9.
Chem Biodivers ; 20(5): e202300002, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37084277

RESUMO

The aim of present work was to study the essential oil chemical composition and antimicrobial activity of cultivated Mentha pulegium L. under different plant growth promoting rhizobacteria (Pseudomonas fluorescens, Bradyrhizobium sp. and Sinorhizobium meliloti) individually and in consortium. Yield, in plants inoculated with Bradyrhizobium sp. and S. meliloti in consortium, increase significantly relative to control plants. GC and GC/MS analyses pointed to a qualitative and quantitative variability of components. The investigated essential oils were clustered into three chemotypes: piperitenone/1,8-cineol (40.9/29.4 %) chemotype in plants inoculated with Bradyrhizobium sp. individually, S. meliloti individually, and Bradyrhizobium sp. and S. meliloti in consortium, piperitone/menthone (41.8/33.8 %) chemotype in plants inoculated with P. fluorescens individually, P. fluorescens and Bradyrhizobium sp. in consortium, and P. fluorescens and S. meliloti in consortium and pulegone/menthol (47.9/31.5 %) chemotype in control plants. The antimicrobial activity, carried out by the disc diffusion method and the determination of the Minimum Inhibitory Concentration (MIC) against ten microorganisms, varied significantly according to the tested microorganism and the rhizobacterial species used individually or in consortium (inhibition zone: 8.5-33.5 mm; MIC: 0.25-2.5 µL/mL). Our findings provided useful indications to select interesting chemotype within M. pulegium, especially in perspective of its cultivation.


Assuntos
Anti-Infecciosos , Mentha pulegium , Mentha , Óleos Voláteis , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Mentha pulegium/química , Eucaliptol , Cromatografia Gasosa-Espectrometria de Massas , Anti-Infecciosos/farmacologia , Mentha/química
10.
Chem Biodivers ; 20(4): e202200247, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36882906

RESUMO

Saline stress is responsible for significant reductions in the growth of plants, and it globally leads to limitations in the performance of crops, especially in drought-affected areas. However, a better understanding of the mechanisms involved in the resistance of plants to environmental stress can lead to a better plant breeding and selection of cultivars. Mint is one of the most important medicinal plants, and it has important properties for industry, and for the medicinal and pharmacy fields. The effects of salinity on the biochemical and enzymatic properties of 18 ecotypes of mint from six different species, that is, Mentha piperita, Mentha mozafariani, Mentha rotundifolia, Mentha spicata, Mentha pulegium and Mentha longifolia, have been examined in this study. The experimental results showed that salinity increased with increasing in stress integrity influenced the enzymatic properties, proline content, electrolyte leakage, and the hydrogen peroxide, malondialdehyde, and essential oil contents. Cluster analysis and principal component analysis were conducted, and they grouped the studied species on the basis of their biochemical characteristics. According to the obtained biplot results, M. piperita and M. rotundifolia showed better stress tolerance than the other varieties, and M. longifolia was identified as being salt sensitive. Generally, the results showed that H2 O2 and malondialdehyde had a positive connection with each other and showed a reverse relationship with all the enzymatic and non-enzymatic antioxidants. Finally, it was found that the M. spicata, M. rotundifolia and M. piperita ecotypes could be used for future breeding projects to improve the salinity tolerance of other ecotypes.


Assuntos
Mentha , Óleos Voláteis , Mentha/química , Antioxidantes/farmacologia , Óleos Voláteis/farmacologia , Estresse Salino , Malondialdeído , Salinidade
11.
Chem Biodivers ; 20(3): e202200566, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36795002

RESUMO

In order to understand the material basis of wild Mentha asiatica Boris. in Xinjiang, the chemical constituents of essential oil extracted from aerial parts of this plant were studied. A total 52 components were detected and 45 compounds were identified. First of all, the essential oil was separated by silica gel column chromatography, and divided into several parts according to the results of thin layer chromatography. Eight fractions were obtained, and then each fragment was preliminarily screened for antibacterial activity. It was found that all eight fragments had certain antibacterial activity in different level. Then the fractions were subjected to preparative gas chromatography (prep-GC) for further isolation. Ten compounds were identified by 13 C-NMR, 1 H-NMR and gas chromatography-quadrupole time of flight-Mass spectrometry (GC-QTOF-MS). They are sabinene, limonene and ß-caryophyllene, (1R*,3S*,5R*)-sabinyl acetate, piperitone oxide, rotundifolone, thymol, piperitone, 4-hydroxypiperiditone, cedrol. After screened by bioautography, 4-hydroxypiperone and thymol were showed best antibacterial activity. The inhibitory effects of the two isolated compounds on Candida albicans and their related mechanisms were studied. The results showed that, 4-hydroxypiperone and thymol significantly reduced ergosterol content on the surface of Candida albicans cell membrane in a dose-dependent manner. This work has accumulated experience for the development and utilization of Xinjiang characteristic medicinal plant resources and new drug research and development, and provided scientific basis and support for the later research and development of Mentha asiatica Boris.


Assuntos
Mentha , Óleos Voláteis , Antibacterianos/farmacologia , Antibacterianos/análise , Cromatografia Gasosa-Espectrometria de Massas , Mentha/química , Óleos Voláteis/química , Timol/química
12.
Protoplasma ; 260(2): 557-570, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35943630

RESUMO

The Mentha species of family Lamiaceae are famous for their flavor and are commercially used in many food products worldwide. They are widely used to cure digestive problems as well as a natural source of antioxidants and antimicrobials. In this report, the essential oils (EOs) of five Mentha species, namely Mentha citrata, Mentha x piperita, Mentha pulegium, Mentha spicata, and Mentha suaveolens were extracted and their chemical diversity was investigated through gas chromatography-mass spectroscopy (GC-MS). The differential doses (5, 10, and 15 µl) of EOs were tested for antimicrobial potential against two gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis), five gram-negative bacteria (Escherichia coli, Pseudomonas aeroginosa, Salmonella typhi, Proteus mirabilis and Klebsiella pneumoniae) and a fungal strain (Candida albicans). The GC-MS results revealed the major components in the EOs were Carvone, Linalool, Hotrienol, Menthol, Isopulegone, Furanone, Piperitone, and Thymol. Moreover, the higher dose (15 µl) of EOs of M. citrata inhibited the growth of S. typhi and C. albicans (35.8 ± 2.4 and 35.2 ± 2.5 mm), M. x piperita inhibited E. coli, B. subtilis, and C. albicans (28.5 ± 3.5, 26.1 ± 2.1, and 25.4 ± 1.1 mm), M. pulegium inhibited K. pneumoniae, B. subtilis, and C. albicans (26.8 ± 1.8, 24.2 ± 2.2, and 25.3 ± 0.9 mm), M. spicata significantly inhibited S. typhi and B. subtilis (35.7 ± 2.7 and 36.3 ± 2.1 mm), and M. suaveolens inhibited K. pneumoniae, C. albicans, and S. typhi (30.8 ± 1.9, 26.9 ± 1.1, and 20.1 ± 0.8 mm) respectively. This study concluded that the EOs of M. citrata was effective against S. typhi and C. albicans. The M. x piperita exhibited strong activities against E. coli, B. subtilis, and C. albicans. Furthermore, the M. pulegium strongly inhibited the growth of K. pneumoniae and C. albicans. The EO of M. spicata was more potent against S. typhi and B. subtilis, while the M. suaveolens was comparatively more effective against S. typhi, K. pneumoniae, and C. albicans. These EOs offer a natural source of antimicrobial agents with high commercial values and social acceptance and could be scale up by food and pharmaceutical industries to control pathogenic diseases.


Assuntos
Anti-Infecciosos , Mentha , Óleos Voláteis , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Mentha/química , Escherichia coli , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Mentol , Testes de Sensibilidade Microbiana
13.
Molecules ; 27(19)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36235263

RESUMO

A poor diet, resulting in malnutrition, is a critical challenge that leads to a variety of metabolic disorders, including obesity, diabetes, and cardiovascular diseases. Mentha species are famous as therapeutic herbs and have long served as herbal medicine. Recently, the demand for its products, such as herbal drugs, medicines, and natural herbal formulations, has increased significantly. However, the available literature lacks a thorough overview of Mentha phytochemicals' effects for reducing malnutritional risks against cardiovascular diseases. In this context, we aimed to review the recent advances of Mentha phytochemicals and future challenges for reducing malnutritional risks in cardiovascular patients. Current studies indicated that Mentha species phytochemicals possess unique antimicrobial, antidiabetic, cytotoxic, and antioxidant potential, which can be used as herbal medicine directly or indirectly (such as food ingredients) and are effective in controlling and curing cardiovascular diseases. The presence of aromatic and flavor compounds of Mentha species greatly enhance the nutritional values of the food. Further interdisciplinary investigations are pivotal to explore main volatile compounds, synergistic actions of phytochemicals, organoleptic effects, and stability of Mentha sp. phytochemicals.


Assuntos
Anti-Infecciosos , Doenças Cardiovasculares , Ingredientes de Alimentos , Mentha , Plantas Medicinais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Humanos , Hipoglicemiantes , Mentha/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Plantas Medicinais/química
14.
Acta Parasitol ; 67(3): 1265-1272, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35704149

RESUMO

PURPOSE: An attempt was made in the current study to develop a natural mosquito larvicide using nanotechnology. METHODS: Solid lipid nanoparticles (SLNs) containing three essential oils were first prepared using the high-pressure homogenizer. Larvicidal effects of essential oils and the SLNs against Anopheles stephensi were then compared. RESULTS: The size of SLN containing Mentha longifolia, Mentha pulegium, Zataria multiflora essential oil was obtained as 105 ± 7, 210 ± 4, and 137 ± 8 nm. Their zeta potentials were - 7.8, - 4.7, and - 9.7 mV. Besides, their efficacy with LC50 values of 24.79, 5.11, and 9.19 µg/mL was significantly more potent than that of their un-formulated essential oils with LC50 values of 36.2, 27.55, and 33.33 µg/mL. CONCLUSION: SLNs containing M. pulegium with the best efficacy (P < 0.05) could be considered as potent larvicides against other important species of mosquitoes and field trials.


Assuntos
Anopheles , Inseticidas , Lamiaceae , Óleos Voláteis , Animais , Inseticidas/farmacologia , Lamiaceae/química , Larva , Lipossomos , Mentha/química , Mentha pulegium/química , Mosquitos Vetores , Nanopartículas , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia
15.
G3 (Bethesda) ; 12(8)2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35551385

RESUMO

Mentha longifolia (L.) Huds., a wild, diploid mint species, has been developed as a model for mint genetic and genomic research to aid breeding efforts that target Verticillium wilt disease resistance and essential oil monoterpene composition. Here, we present a near-complete, chromosome-scale mint genome assembly for M. longifolia USDA accession CMEN 585. This new assembly is an update of a previously published genome draft, with dramatic improvements. A total of 42,107 protein-coding genes were annotated and placed on 12 chromosomal scaffolds. One hundred fifty-three genes contained conserved sequence domains consistent with nucleotide binding site-leucine-rich-repeat plant disease resistance genes. Homologs of genes implicated in Verticillium wilt resistance in other plant species were also identified. Multiple paralogs of genes putatively involved in p-menthane monoterpenoid biosynthesis were identified and several cases of gene clustering documented. Heterologous expression of candidate genes, purification of recombinant target proteins, and subsequent enzyme assays allowed us to identify the genes underlying the pathway that leads to the most abundant monoterpenoid volatiles. The bioinformatic and functional analyses presented here are laying the groundwork for using marker-assisted selection in improving disease resistance and essential oil traits in mints.


Assuntos
Mentha , Óleos Voláteis , Verticillium , Cromossomos , Resistência à Doença/genética , Mentha/química , Mentha/genética , Mentha/metabolismo , Monoterpenos/análise , Monoterpenos/metabolismo , Óleos Voláteis/metabolismo , Melhoramento Vegetal , Verticillium/genética
16.
Molecules ; 27(9)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35566313

RESUMO

Mentha is an aromatic plant used since antiquity for its pharmaceutical virtues. The climate of Saudi Arabia favors the growth of aromatic plants including Mentha suaveolens L. The aim of this study is to analyze the volatile oils of different parts of fresh and dried Mentha suaveolens L. grown in Saudi Arabia (Aljouf area) using Gas Chromatography/Mass Spectrometry (GC/MS) and Gas Chromatography Flame Ionization Detector (GC/FID) techniques, to recognize the effect of drying on chemical composition, then to evaluate the antioxidant and antifungal activities of different extracts. In total, 118 compounds were identified via GC/MS and GC/FID, in which carvone is the main volatile constituent (stems, leaves, whole plant 45-64%). This investigation deduces that Mentha belonged to the carvone chemotype. Then, the analysis of non-volatile constituents of fresh and dried Mentha was performed by HPLC. The main phenolic compound of fresh and dried Mentha for different parts was rosmarinic acid (ranging from 28,002.5 to 6558 µg/g). The ethanolic extract of fresh stem showed the highest antifungal activity (53% inhibition) compared with miconazole (60% inhibition) but the ethanoic extract of dry stem showed no activity. Additionally, all ethanolic extracts, whether for fresh or dry Mentha, have antioxidant activity more than 90% while the antioxidant activity of whole plant volatile oil is equal to 53.33%. This research shows that M. suaveolens L. could be applied to manufacture natural antioxidants, antifungal, and flavoring agents.


Assuntos
Mentha , Óleos Voláteis , Antifúngicos/química , Antioxidantes/química , Cromatografia Gasosa-Espectrometria de Massas , Mentha/química , Óleos Voláteis/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Arábia Saudita
17.
Int J Mol Sci ; 23(10)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35628103

RESUMO

Mint (Mentha L., Lamiaceae) is a strongly scented herb of the family Lamiaceae that is grown mostly by clonal propagation, making it a valuable species for the study of somaclonal variation and its phenotypic consequences. The recent introduction of a few species of mint in South America, followed by a presumably rampant propagation, make this region particularly ideal for studying the extent of somaclonal genetic diversity. Hence, the objective of this work was to offer a preliminary characterization of somaclonal genetically coding diversity of the mint in the northern Andes in order to address the question of whether somaclonal variants may have emerged despite relatively recent introductions in a region where mint is not native. A total of 29 clonally propagated specimens, collected in mint export farms in the province of Antioquia, a major region for mint production in the northwest Andes of Colombia, were genotyped using RNA sequencing (RNA-Seq). SNP calling was carried out from the leaves' transcriptome profiles of each plant by combining the GATK4 and TRINITY protocols, obtaining a total of 2033 loci across 912 transcripts with a minimum read depth of 20X and 4% of missing data. Unsupervised machine learning algorithms considered the K-means, AGNES and UPGMA approaches, all of which suggested three genetic clusters for M. spicata and a unique cluster for M. × piperita. The results indicate that at least two different origins of M. spicata reached the eastern region of the Antioquia province, clonally propagated in the locality ever since for local consumption and export. One of these ancestries had more population structure, possibly due to environmental or anthropological pressures that intervened in the fragmentation of this genetic group or to a higher somaclonal mutation rate. This work offers a first step into the study of the accumulation and transmission of presumably quasi-neutral somatic mutations at coding regions in an herbaceous clonally propagated scented species such as mint, likely favored by an expected population expansion after its Andean introduction. These ad hoc hypotheses warrant further study as part of future research.


Assuntos
Lamiaceae , Mentha , Genômica , Lamiaceae/genética , Mentha/química , Mentha/genética , Transcriptoma/genética , Sequenciamento do Exoma
18.
J Chromatogr A ; 1674: 463125, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35597196

RESUMO

Suspension particle assisted solvent sublation was designed for the first time. The volatile monoterpenes in Mentha haplocalyx Briq were extracted using this method from a solution containing plant solid particles as the lower phase of solvent sublation. Under the optimum conditions of the solvent sublation (n-hexane/plant solid particles 20% ethanol-water solution system, pH 4, flotation time 30 min and air flow rate 30 mL/min), the extraction yields were 2.0 × 102 mg/kg, 9.5 × 101 mg/kg and 1.2 × 103 mg/kg for menthone, isomenthone and menthol, respectively. Compared with the traditional methods, the established suspension particle assisted solvent sublation might be an economical and efficient extraction method in some aspects. Through a cellular antioxidant activity experiment, menthol could alleviate H2O2-induced oxidative stress. Molecular docking was applied to simulate the molecular recognition process between amyloid-ß and menthol. The affinity energy of menthol was -12.59 kJ/mol, indicating that menthol might have neuroprotective activity and the potential to be an amyloid-ß inhibitor.


Assuntos
Mentha , Fármacos Neuroprotetores , Óleos Voláteis , Peptídeos beta-Amiloides , Peróxido de Hidrogênio , Mentha/química , Mentol/química , Mentol/farmacologia , Simulação de Acoplamento Molecular , Fármacos Neuroprotetores/farmacologia , Óleos Voláteis/química , Solventes
19.
J Agric Food Chem ; 70(18): 5668-5679, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35475602

RESUMO

The demand for mint is increasing from year to year, and it is more important than ever to secure a sustainable and robust supply of such an important plant. The USDA mint core collection provides the basis for many researches worldwide regarding, e.g., sequencing, cytology, and disease resistances. A recently developed toolbox enables here for the first time the analysis of such a complex collection in terms of the aroma compound composition and the mapping of flavor alterations depending on taxonomy, environmental conditions, and growing stages by means of comprehensive liquid chromatography tandem mass spectrometry. Therefore, in this study, not only the aroma compound composition of 153 genotypes was characterized but it was also demonstrated that the composition varies depending on taxonomy and changes during the growth of the plant. Furthermore, it could be shown that greenhouse conditions have an enormous influence on the concentrations of aroma compounds.


Assuntos
Mentha , Compostos Orgânicos Voláteis , Cromatografia Líquida de Alta Pressão , Genótipo , Mentha/química , Odorantes/análise , Espectrometria de Massas em Tandem , Compostos Orgânicos Voláteis/análise
20.
Molecules ; 27(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35408640

RESUMO

The purpose of this study was to chemically compare samples of Mentha spicata (marketing byproducts, production byproducts, and export material), cultivated in the open field and under greenhouse, using an integrated approach by HPLC/DAD and GC/MS analysis. The presence of phenolic compounds was higher in the marketing byproducts cultivated in the open field. Marketing byproducts also had the highest amount of carvone. For this reason, this byproduct was selected as a candidate for the development of natural ingredients. With the best selected material, the optimization of simultaneous high-intensity ultrasound-assisted extraction processes was proposed for the recovery of the compounds of interest. This extraction was defined by Peleg's equation and polynomial regression analysis. Modeling showed that the factors amplitude, time, and solvent were found to be significant in the recovery process (p < 0.005). The maximum amount of compounds was obtained using 90% amplitude for 5 min and ethanol/water mixture (80:20) for extraction to simultaneously obtain phenolic and terpenoid compounds. This system obtained the highest amount of monoterpenoid and sesquiterpenoid compounds from the essential oil of M. spicata (64.93% vs. 84.55%). Thus, with an efficient and eco-friendly method, it was possible to optimize the extraction of compounds in M. spicata as a starting point for the use of its byproducts.


Assuntos
Mentha spicata , Mentha , Óleos Voláteis , Mentha/química , Mentha spicata/química , Monoterpenos/análise , Óleos Voláteis/química , Fenóis , Compostos Fitoquímicos , Extratos Vegetais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...